% SOy S R & Journal of the Society of Automotive Engineers Malaysia
J: = Volume 8, Issue 3, pp 153-160, September 2024
'N&E;rag‘;';ah e-ISSN 2550-2239

Optimization of Driver Behavior Profiling through K-means
Unsupervised Clustering Algorithm Using Real-world Data
M. H. Danial*, Z. Z. Abidin and N. A. Asyqin

Centre for Unmanned Technologies (CUTe), Kulliyah of Eng., International Islamic Uni. Malaysia, Selangor

*Corresponding author: mhariz.hasbullah@live.iium.edu.my

Article History: ABSTRACT - The use of telematics systems has brought benefits as conventional

modern cars are now equipped with the technology, allowing data gathering to a
Received centralized system, allowing vehicle monitoring and management. The data gathered
1 Jul 2024 from the sensors can provide insight into driver behavior and driving patterns.

Unfortunately, the data is not fully utilized for in-depth analysis, as the pattern can be too
Accepted sophisticated to understand. This hinders its potential to improve the safety of the road
17 Aug 2024 environment, as providing information from the data pattern can be utilized by drivers, law

enforcement, policy makers, or anyone related to road safety management. This paper
Available online provides an in-depth analysis of real-world driving data behavior using unsupervised
1 Sep 2024 algorithms (K-means). The paper aims to assess the data pattern of the driver. The study

uses the K-means algorithm to cluster the data of drivers and separate it by pattern.
Further analysis is needed to classify driving based on characteristics of the clusters,
such as bad and good drivers. The findings reveal that K-means was able to identify
patterns of the driving behavior, and analysis was done for categorization. 6 clusters were
identified in the algorithm, where clusters 2 and 4 exhibit good driving patterns while
clusters 1,3,4, and 6 exhibit bad driving patterns. This research provides crucial
information to the driver's awareness, gives insight into policymakers and law
enforcement, thus improving the safety of the road.
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1. INTRODUCTION

Telematics has emerged as a pivotal technology in the automotive industry, transforming how vehicles
operate, communicate, and integrate into broader transportation networks. A Telematic Control Unit
(TCU) in a vehicle allows data from a variety of sources within a connected vehicle to be collected
(Gekker & Hind, 2020). This technology allows important data to be collected and analyzed,
understanding information behind the data collection, potentially improving the safety of the road. The
maijority of driving accidents are due to human errors; these errors are from reckless and undisciplined
driving behaviors and have always been the leading contributors to all sorts of incidents across the
globe (Ghaffarpasand et al., 2022). More than 90% of traffic accidents are due to drivers’ behavior and
their interests. Thus, studying how drivers’ behavior is important to reduce traffic accidents (Liu et al.,
2020).

A telematic system with an intelligent vehicular telematic platform was proposed, which allows real-time
monitoring of vehicular information such as vehicle engine speed, oxygen levels, speed per hour, and
water temperature. The concept works by connecting the Controller Area Network (CAN) bus in the
vehicle with an On-Board Diagnostic (OBD) bridge to receive information. The CAN bus can be used
as internal LANs communication in a vehicle; hence, outside communication is unable to connect unless
OBD is used to directly connect to the Local Area Networks (LANs) communication. OBD provides
significant information because of the diagnostic mode to analyze malfunctions in a vehicle (Chen et
al., 2016). The majority of modern cars come with OBD technology, where information about the car
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can be obtained, such as speed, engine speed, acceleration, and deceleration, to be analyzed (Pereira
et al., 2016).

A study by Liu et al. (2020) obtains drivers’ data from the OBD terminal and combines it with x-axis and
y-axis acceleration changes and behavior duration of the vehicle’s three-axis acceleration sensor to
identify abnormal driving behavior, establishes a hierarchical driving behavior indicator system, and a
judgment matrix. It uses threshold standards as references to detect abnormal driving behavior such
as rapid acceleration, rapid deceleration, and sharp turns. By analyzing the data from the drivers, bad
driving behavior can be detected and send awareness to the driver. From past studies, different
approaches were made to determine driving behavior, such as conducting driving data simulation or
collecting data through GPS to obtain speed and acceleration to evaluate driving behavior (Wu, 2004).
However, existing methods for detecting aggressive driving often rely on subjective definitions and
manually set thresholds based on specific driving parameters (Junior et al., 2017). For example,
threshold used for driving behavior detection is for safe acceleration and deceleration lie approximately
within a range of £0.3 g (3m/s2), sudden acceleration and deceleration lie within a range of +0.5g
(5m/s2), and gradual lane changes produce an average g-force less than £0.1g. (approximately 1m/s2),
and unsafe lane changes have a g-force over 0.5 g (Fazeen et al., 2012). A comparison between rule-
based and pattern-matching algorithms was made. The results reveal that pattern-matching algorithms
give better performance than rule-based algorithms (Saiprasert, 2013).

Driving behavior data can be analyzed using algorithms, statistical analysis, deep learning, or machine
learning. By analyzing driving behavior, it can be applied to various situations such as road conditions
improvement, safety warning systems, and many more (Anil & Anudev, 2022). Furthermore, driving
analytics adaptations improve other aspects of transportation systems, such as increasing overall
security and reducing the usage of vehicle energy and gas emissions. Therefore, by exploring the
potential of driver analysis, it could further improve safer and energy-efficient driving style (Syed Ahmad
et al., 2022). Unsupervised clustering algorithms can be used to label unlabeled raw data. In this
research, K-means is used as our algorithm to detect driving behavior categories. K-Means clustering
is an unsupervised learning algorithm used to group an unlabeled dataset into clusters.

Identification and categorization of driving behavior are necessary because they improve traffic safety,
and this application can be used in intelligent transportation systems (Xiao et al., 2023). K-means
algorithms have shown satisfactory results in recognizing driving patterns and dividing them into
clusters without the need for labelling raw data (Chhabra et al., 2017). Limitations of the algorithm also
need to be considered, as high-dimensional data with low variance may pose a challenge for clustering
algorithms such as K-means, leading to lower accuracy, less meaningful clustering, and high
computational complexity.

Aggressive driving behavior studies based on Principal Component Analysis (PCA) and K-means
clustering show the effectiveness in recognizing different driving patterns without the use of thresholds.
The ability to separate clusters in the K-means shows the relevance of the clustering algorithm to
recognize driving behavior patterns. However, the driving pattern is affected by external factors such
as traffic environment, vehicle types, and weather conditions; therefore, it requires further analysis on
its dataset (Xiao et al., 2023). Therefore, the enhancement in using the K-means models across
different types of driving pattern datasets needs to be studied.

In this study, an exploration was conducted to study the driving patterns of the drivers. The aim is to

use the K-means algorithm for cluster separation, result analysis, and driving profiling categorization
with the use of a dataset that has higher dimensions, such as speed and engine load data.

2. METHODOLOGY

2.1 Scope of Study

This study will be conducted on a normal one-lane road, and the road conditions are safe for driving.
Two parameters will be maintained throughout the data collection, which is a fixed route during the

collection; this ensures enough data points are collected. The second parameter is to use the same
type 2 passenger vehicle during the collection. These parameters are crucial to maintain data reliability
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and reduce variability. After a certain amounts of data are collected, it will be inserted into the K-means
algorithm to allow clustering and analysis of the data will be done for driving behavior categorization.

2.2 Experimental Setup

The project aims to collect driving data from drivers, where each driver displays their own driving
behavior. A hardware telematic system was developed and implemented in a vehicle for data analysis.
The proposed systems will help implement the features and technologies required to achieve our
objectives by improving the safety of traffic and vehicles. Various data will be collected by the sensors
and will be sent to the microcontroller of the telematic system to be processed. Then the data will be
transferred to the K-means algorithm for driving behavior analysis. A fixed route is determined shown
in Figure 1 where the distance of the route is 3.3 km. Figure 1 shows the route that will be used during
the data collection.

FIGURE 1: Single-lane road route
2.3 Data Sources

The data for this study was collected using the OBD-Il UART board by SparkFun and the MPU-6050
sensor, both of which are essential tools for capturing the necessary data from the vehicle for driving
behavior data. A microcontroller, ESP8266, is used to process the data from the sensors and save it to
a local machine.

The OBD-Il UART Board by SparkFun is a device designed to interface with a vehicle’s On-Board
Diagnostics (OBD-II) system. It retrieves real-time vehicle parameters such as speed and engine load.
Speed, measured in kilometers per hour (km/h), provides critical information on the velocity of the
vehicle, while engine load indicates the percentage of engine capacity being utilized. These parameters
are vital for profiling driving behavior, as they directly reflect how the vehicle is being operated in
different conditions. The board sends requests for data by sending the Parameter identification (PID)
to the vehicle computer to request the information. However, PID standards may differ depending on
the car manufacturer, therefore, further research is needed to identify what PID of the vehicle. Figure 2
shows the SparkFun OBD-Il UART.

The MPU-6050 Sensor captures both acceleration and gyroscopic data along the X, Y, and Z axes. The
acceleration data format is in “g” which is the gravitational unit where 1 g refers to 9.8 m/s*2; thus,
acceleration data provides insights into linear motion. Meanwhile, gyroscopic data captures rotational
movements of the vehicle by giving the data in degrees. Derived metrics such as acceleration
magnitude, jerk, and angular velocity are calculated to better represent driving behavior. These metrics
are crucial for detecting sudden changes, such as harsh braking, rapid acceleration, sharp turns, or
erratic movements, which are often indicative of aggressive or unsafe driving styles. The sensor’s high
sensitivity and versatility make it a critical component of the data collection system. Figure 3 shows the
MPU-6050 accelerometer sensor.
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FIGURE 3: MPU-6050 accelerometer sensor

2.4 Hardware Telematic System

The telematic box used for this research is an integrated device that is housed in a compact electrical
box containing components necessary to collect data. The components consist of the main
microcontroller, which is an ESP8266 microcontroller, to process data from the OBD UART board and
MPU-6050 sensors. The microcontroller translates serial communication from these external modules
to readable data and sends data requests to the vehicle’s ECU, hence supporting real-time data
streaming during the vehicle's operation. The OBD-Il UART 2 board by SparkFun is used to retrieve
vehicle parameters such as speed and engine load through the OBD-II port of the vehicle. This board
is necessary as a gateway between the ESP8266 microcontroller and the vehicle’s Electronic Control
Unit (ECU), as certain requirements are needed before requesting the data. Figure 4 shows the
telematic box hardware setup.

FIGURE 4: Telematic box hardware

2.5 Integration with Vehicle

The telematic box is connected to the vehicle via the OBD-Il port and positioned securely within the
vehicle cabin. The setup includes a few processes for this research, where, firstly, vehicle compatibility
is needed for the telematic box to retrieve data. The telematic box is compatible with any vehicle
equipped with an OBD-Il port, a standard feature in most modern cars. For this study, the test vehicle
used was a 2022 Proton Saga MC2; this car model has an OBD-Il port and provided reliable OBD-II
data access. The figure below shows the car model used for the setup and the OBD port location.
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FIGURE 5: Vehicle (left); OBD port location (right)

3. RESULTS AND DISCUSSION

Figure 6 shows the Elbow method used to determine the result in determining optimal number of
clusters (K), It plots the sum of squared distances (inertia) between data points and their assigned
cluster center for different values of k. The figure shown shows the number of clusters used in clustering
on the x-axis, and the y-axis represents the compactness of clusters (inertia). The lower the inertia
difference value, the higher the chance of the elbow point occurring. As seen from the graph, the
clusters K was tested to 10 clusters. The slope of the data plot decreased gradually at different rates
as clusters increased, eventually forming an elbow-like shape. From Clusters 1 to 2, the inertia
difference is high, indicating more compact clusters. As the clusters increase, the decrease in inertia
becomes less, showing that adding more clusters gives diminishing returns. Six clusters were chosen
for clustering because beyond cluster 6 does not significantly reduce the inertia and complexity of the
model will also increase.

Elbow Method for Optimal k
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2 4 6 8 10
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FIGURE 6: Elbow method analysis

Figure 7 shows the K-means clustering visualization with K = 6. The figure shows the clustering result
with six clusters, whereby each cluster is color-coded to distinguish the separation. Each cluster
represents different driving patterns where K-means effectively separation between the different driving
patterns for analysis. The clustering result is represented by Principal Component Analysis (PCA)
pattern to reduce the high-dimensional feature space into two principal components for readable
analysis. Cluster O is represented by purple, Cluster 1 is dark blue, Cluster 2 is light blue, Cluster 3 is
light green, Cluster 4 is green, and Cluster 5 is yellow. The PCA-based clustering visualization
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effectively illustrates six different driving patterns. Figure 8 illustrates the visualization in the 3D

component.
K-Means Clustering Visualization

PCA Component 2
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FIGURE 7: 2D PCA visualization clusters
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FIGURE 8: 3D PCA visualization clusters

Table 1 shows the summary of the clustering pattern and its explanation. The acceleration data reveals
distinct driving behavior patterns categorized into good and bad driving behavior, along with a
description of driving patterns. The range of AccX (longitudinal acceleration) and AccY (lateral
acceleration) values for each cluster further supports these classifications, as clusters associated with
bad driving exhibit wider acceleration variations, whereas good drivers maintain a more stable and
controlled range. Cluster 1 shows the AccX values range from -1.385 to 2.980 m/s2, showing the highest
magnitude of acceleration but smooth braking (deceleration), for AccY lane changes range from -2.735
to 2.458 m/s2, showing stable lane changes. In cluster 2, it shows AccX value of -2.378 to 2.383 m/s2,
indicating a moderate magnitude value of acceleration and braking, as the value is lesser than Cluster
1 for acceleration and Cluster 3 for braking, for AccY lane changes range from -2.337 to 2.403 m/s2,
showing stable lane changes. In Cluster 3, the AccX value ranges from -2.772 to 2.383 m/s2, showing
the highest magnitude of braking but smooth acceleration, for the AccY range from -2.475 to 2.393
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m/s2, indicating stable lane changes. In Cluster 4, the AccX value ranges from -1.692 to 1.918, showing
smooth acceleration and braking, for the AccY value range of -0.499 to 2.521 m/s2indicating stable lane
changes. For cluster 5, AccX shows a value range -2.592 to 2.667 m/s2showing moderate acceleration
and deceleration, for AccY value range -2.824 to 0.324 m/s2, indicating sharp lane changes. Finally, for
cluster 6, AccX ranges from -2.627 to 2.018 m/s2, showing moderate acceleration and braking, and for
AccY, the range is -2.682 to 2.271 m/s2, showing sharp lane changes.

TABLE 1: Clustering pattern

K=6 AccX (m/s2) AccY (m/s2) Description Category

Cluster 1 | (-1.385)t02.980 | (-2.735)to 2458 | Harshacceleration and smooth | g, e
braking, stable lane changes

Moderate acceleration and

Cluster 2 (-2.378) to 2.383 (-2.337) to 2.403 braking, stable lane changes Good driver
Harsh braking and smooth
Cluster 3 (-2.772) to 1.857 (-2.475) to 2.393 acceleration, stable lane Bad driver

changes

Cluster4 | (-1.692)t01.918 | (-0.499)to2.521 | Smooth acceleration and Good driver
braking, stable lane changes

Cluster5 | (-2.592)t02.667 | (-2.824)t00.324 | Moderate acceleration and Bad driver
braking, sharp lane changes

Harsh braking and smooth
Cluster 6 (-2.627) 10 2.018 (-2.682) to 2.271 acceleration, sharp lane Bad driver
changes

By comparing the range value in Table 1. The highest and the lowest magnitudes of acceleration data,
AccX and AccY, indicate a threshold for driving pattern evaluation. Cluster 1, 3, 5, 6 is categorized as
a driver because they exhibit the driving pattern of harsh acceleration, harsh braking, and sharp lane
changes. Meanwhile, clusters 2 and 5 are classified as good drivers, showing more stable changes and
below the threshold value magnitude.

4. CONCLUSION

This study successfully applied K-means clustering to analyze and classify driving behaviors based on
driving data of AccX (longitudinal acceleration) and AccY (Lateral acceleration). The data was captured
on a Type 1 vehicle and a fixed route. This is to ensure data has stable variability. The clustering results
revealed six distinct driver profiles, where Clusters 2 and 4 were identified as good drivers with smooth
acceleration, braking, and stable lane changes, while Clusters 1, 3, 5, and 6 exhibited aggressive
tendencies such as harsh acceleration, harsh braking, and sharp lane changes, categorizing them as
bad drivers. The acceleration variations in bad driver clusters showed significantly wider ranges
compared to good driver clusters, supporting the effectiveness of clustering in differentiating between
safe and risky driving behaviors. These findings highlight the effectiveness of K-means clustering in
differentiating between aggressive and cautious driving behaviors, providing valuable insights for
applications in road safety analysis, driver monitoring systems, and insurance risk assessments. These
findings emphasize the potential of unsupervised machine learning in driver profiling, which can be
leveraged for applications such as driver monitoring systems, insurance risk assessments, and
intelligent transportation safety programs. However, this study is limited to acceleration-based
clustering and does not consider external environmental factors such as weather conditions or traffic
influences. Moreover, the data quality can be further improved with higher variations and more data
points, which allows the clustering process to be more separable, hence more meaningful. Future
research can explore real-time clustering applications, multi-sensor data integration, external factor
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dataset and adaptive learning models to further enhance driver behavior classification accuracy and
robustness.
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